期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Journal of Agriculture and Food Science. 2022; 2: (3) ; 1-9 ; DOI: 10.12208/j.jafs.20220022.

Preparation and sustained release of ascorbicacid nanoparticles based on γ-PGA
基于γ-PGA缓释抗坏血酸纳米颗粒的制备及缓释

作者: 温学康, 黄银凤, 余作龙 *

浙江树人学院生物与环境工程学院 浙江杭州

*通讯作者: 余作龙,单位:浙江树人学院生物与环境工程学院 浙江杭州;

发布时间: 2022-09-08 总浏览量: 306

摘要

目的 本研究是为探索一种能够保护抗坏血酸使其免受环境因素影响的载体和其缓释性能。方法 本文以γ-聚谷氨酸(γ-PGA)和壳聚糖(CS)作为主要基材,向抗坏血酸和γ-PGA当中加入三聚磷酸钠(STPP)和聚乙烯吡咯烷酮(PVP)作为螯合剂和稳定剂,再将四种溶液混合之后滴加到CS当中,制备得到γ-PGA基抗坏血酸纳米颗粒。首先通过各原料不同浓度的配方对形成纳米颗粒的影响的单因素实验来确定单个最佳配方,然后对纳米颗粒进行粒径与电位分析和红外光谱分析,在粒径与电位分析中测定纳米颗粒的粒径(Z-AVE)、粒径分布指数(PDI)和表面电位(Zeta),通过比较分析各项结果来确定总体最佳配比,最后制得最佳配比的抗坏血酸纳米颗粒进行体外的缓释实验。结果 本实验当中确定了γ-PGA基抗坏血酸纳米颗粒的最佳配比为:STPP浓度为0.4%、γ-PGA浓度为0.2%、PVP浓度为0.1%、CS浓度为0.02%。在最佳配比下,在pH1.2和pH6.8缓冲液中进行抗坏血酸的缓释实验,结果表明γ-PGA基抗坏血酸纳米颗粒在pH1.2和pH6.8溶液中,累积释放率分别达到了101.15%和100.80%。结论 确定了γ-PGA基纳米颗粒缓释抗坏血酸的最佳组成配方,在两种模拟环境具有缓慢且持续释放的效果。

关键词: 抗坏血酸;γ-聚谷氨酸;纳米颗粒;制备;缓释

Abstract

Objective This study is to explore a carrier that can protect ascorbic acid from environmental factors and its sustained-release performance.
Methods In this paper γ- Polyglutamic acid( γ- PGA) and chitosan (CS) were used as the main substrates, which were added to ascorbic acid and γ- Sodium tripolyphosphate (STPP) and polyvinylpyrrolidone (PVP) were added to PGA as chelating agents and stabilizers, and then the four solutions were mixed and added dropwise to CS to prepare γ- PGA based ascorbic acid nanoparticles. First, the single optimal formula was determined through the single factor experiment of the influence of the formulations of different concentrations of raw materials on the formation of nanoparticles, and then the particle size and potential analysis and infrared spectrum analysis were carried out on the nanoparticles. The particle size (z-ave), particle size distribution index (PDI) and surface potential (zeta) of the nanoparticles were measured in the particle size and potential analysis. The overall optimal ratio was determined by comparing and analyzing the results, Finally, the optimal ratio of ascorbic acid nanoparticles was prepared for in vitro sustained-release experiments.
Results In this experiment γ- The optimum ratio of PGA based ascorbic acid nanoparticles is: STPP concentration is 0.4% γ- The concentration of PGA was 0.2%, the concentration of PVP was 0.1%, and the concentration of CS was 0.02%. Under the optimal ratio, the sustained-release experiment of ascorbic acid was carried out in ph1.2 and ph6.8 buffers. The results showed that γ- The cumulative release rates of PGA based ascorbic acid nanoparticles in ph1.2 and ph6.8 solutions reached 101.15% and 100.80%, respectively.
Conclusion   γ- PGA based nanoparticles are the best composition of slow-release ascorbic acid, which has the effect of slow and continuous release in two simulated environments.

Key words: Ascorbic Acid; γ-Polyglutamic Acid; Nanoparticles; Preparation; Sustained release

参考文献 References

[1] 张静,曹炜,曹燕萍,等.红枣汁中维生素C热降解的动力学研究[J].农业工程学报,2008,24(6):295-298.

[2] 阮丽,曾庆肖,张文.维生素C含量检测方法的研究进展[J].食品安全导刊,2021(18):187-188.

[3] 朱志红,伍柏坚,郑荣波,等.刺梨及果脯的维生素C分析研究[J].饮料工业,2021,24(02):40-44.

[4] 金苏英,张丽华,姚森,等.柠檬汁饮料中维生素C稳定性的研究[J].饮料工业,2020,23(06):6-11.

[5] 曾昕,冉磊.维生素C对皮肤健康的促进作用研究进展[J].现代医药卫生,2020,36(19):3108-3110.

[6] 王明刚.维生素C泡腾片关键技术研究及产业化应用[Z].山东省,青岛:正大制药,2019-05-13.

[7] 韩颖达.新型壳聚糖/抗坏血酸复合物的制备与应用性能研究[D].天津:天津大学,2007:58-59.

[8] 贾双珠,李长安,刘品祯,等.壳聚糖的应用研究进展[J].精细与专用化学品,2022,30(01):25-30.

[9] 都笑非.壳聚糖在生物医用高分子材料中的研究进展[J].河南化工,2021,38(12):5-6.

[10] 冯世红,张宗华,王飞,等.γ-PGA发酵生产及提取工艺优化[J].发酵科技通讯,2022,51(01):1-5.

[11] 罗丽娟,王刚,万玉军,等.γ-聚谷氨酸高产菌株选育及发酵条件优化[J].食品与发酵科技,2021,57(06):35-42.

[12] 陈升宝,王丽敏,于波.不同分子量γ-聚谷氨酸的生物合成[J].微生物学报,2022,62(07):2796-2807. 

[13] 唐聪敏.三聚磷酸钠对蛋清蛋白-多糖复合体系凝胶特性影响研究[D].吉林大学,2022:9-10.

[14] 陈欣,卢小菊,孟鸳.聚乙烯吡咯烷酮/壳聚糖水凝胶的制备与表征[J].湖北理工学院学报,2016,32(04):26-30. 

[15] 殷旭东,程威,杨晓虹,等.聚乙烯吡咯烷酮/羧化壳聚糖水凝胶的制备及其理化性质的测定[J].广东化工,2017,44(22):45-46. 

[16] 郭锐,李家奎,刘洪,等.纳米缓释载体的研究进展[J].中国畜牧兽医,2007(05):146-148.

[17] 朱旻鹏,李苏红.姜黄素稳定性及其淀粉微球载药的研究[C]//智能信息技术应用学.Proceedings of 2011 International Conference on Biomedicine and Engineering.Bali Island,Indonesia:International Industrial Electronic Center,2011:433-436.

[18] 潘飞,赵磊,陈艳麟,等.壳聚糖/γ-聚谷氨酸负载黑米花色苷纳米粒的制备、表征及缓释性能[J].食品科学,2021,42(10):38-44.

[19] 任东雪,陈鹏程,郑璞,等.γ-聚谷氨酸/壳聚糖纳米颗粒的制备及pH响应释放性能[J].功能高分子学报,2020,33(01):54-62.

[20] 张萌,吕宏达,李丽,等.三聚磷酸钠对离子凝胶法制备壳聚糖纳米粒粒径的影响[J].卫生经营管理,2019,16(07):58-59.

[21] 潘晓晨,庄华红,张琳,等.甲基纤维素/γ-聚谷氨酸复合温敏水凝胶的制备及其性能的研究[J].离子交换与吸附,2018,34(01):9-18.

[22] 吕凤娇,吴洪,许小平.聚乙烯吡咯烷酮-阿霉素纳米颗粒的制备研究[J].离子交换与吸附,2011,27(2):145-151.

[23] 王建涛,潘晓晨,王淑芳.γ-聚谷氨酸/壳聚糖/纳米银复合水凝胶的制备和表征[J].离子交换与吸附,2016,32(04):297-305.

[24] 桑娜,汪建英,孙雨,等.γ-聚谷氨酸/壳聚糖凝胶制备优化及保水固沙性能[J].江苏农业科学,2019,47(1):251-255.

[25] Mora-Huertas CE,Fessi H,Elaissari A.Polymer based nanocapsules for drug delivery[J]. International Journal of Pharmaceutics,2010,385(1-2):113-142.

[26] Daniel HP,Bruno SC,Mario ACV,et al.Development of chitosan and alginate nanocapsules to increase the solubility,permeability of curcumin[J]. International Journal of Pharmaceutics,2019,14(2):132-140.

[27] Vishwakarma N,Jain A,Sharma R,et al.Lipid-based nano carrieers for lymaphatic transportation[J].Aaps Pharmscitech,2019,20(2):83.

[28] 武陶,丁武.山梨酸纳米防腐颗粒的制备、表征及其缓释性能[J].食品科学,2014,35(10):57-61.

[29] 沈素晶,黄来强,沈素云,等.青蒿琥酯纳米颗粒的制备及其体外抑制肿瘤细胞增殖的作用研究[J].现代生物医学进展,2013,13(23):4437-4442.

[30] Tan QY,Wang N,Yang H,et al.Characterization,stabilization and activity of uricase loaded in lipid vesicles[J].International Journal of Pharmaceutics,2010,384(1-2):165-172.

[31] 徐杰,桑欣欣,石刚,等.黄原胶纳米微凝胶的制备及其pH/还原响应性能[J].功能高分子学报,2018,31(01):57-62.

[32] 白雪,周亚敏,吴鲁艳,等.改性海藻酸钠聚合物微球制备及药物释放研究[J].化工新型材料,2017,45(03):256-258.

引用本文

温学康, 黄银凤, 余作龙, 基于γ-PGA缓释抗坏血酸纳米颗粒的制备及缓释[J]. 农业与食品科学, 2022; 2: (3) : 1-9.