摘要
土壤水稳性团聚体是反映土壤结构是否合理的一个关键指标,但是,关于灌水量和施氮量对河套灌区耕地土壤水稳性团聚体影响的研究一直缺乏。本研究在河套灌区的田间试验为双因素(施氮量和灌水量)裂区试验设计,3个重复。主处理为灌水洗盐的灌水量,包含3个水平:I1、I2、I3(5110、4050、2985 m3/hm2);副处理为施氮量,包括4个水平:N1、N2、N3、N0(750、600、450、0 kg/hm2)。研究结果预示:施用氮肥能够增加0~30 cm土壤电导率。施用氮肥能够在N2下使水稳性团聚体含量达到最大。灌水量与施氮量交叉项对土壤电导率和土壤水稳性团聚体影响显著。在高灌水量下,施氮量显著增加土壤水稳性团聚体;在中灌水量下,中施氮量土壤水稳性团聚体含量最高。
关键词: 灌水量;施氮量;水稳性团聚体;pH;土壤电导率;河套灌区
Abstract
Soil water-stable aggregate is a key indicator of soil structural integrity. However, little is known about the impacts of irrigation and nitrogen fertilization rates on it in the Hetao Irrigation District. In this study, a split plot experimental design with two factors (irrigation and nitrogen fertilization rate) and three replicates was built on the sunflower land in the Hetao Irrigation District. Main treatment was the irrigation rate, which includes three levels: I1, I2, and I3 (5110, 4050, and 2985 m3/ha). The sub-treatment was the nitrogen fertilization rate, which has four levels: N1, N2, N3, and N0 (750, 600, 450, and 0 kg/ha). The results indicated that applying nitrogen fertilizer could increase the soil electrical conductivity value of the 0~30 cm soil layer. The application of nitrogen fertilizer could maximize the content of water-stable aggregates at the N2. The interaction between irrigation rate and nitrogen fertilization rate had a significant influence on soil electrical conductivity and soil water-stable aggregate. Under a high irrigation rate, nitrogen fertilization rate significantly increased soil water-stable aggregate. At a medium irrigation rate, the content of water-stable aggregates in soil with medium nitrogen fertilization rate was the highest.
Key words: Irrigation rate; Nitrogen fertilization rate; Soil water-stable aggregate; pH; Soil electrical conductivity; Hetao Irrigation District
参考文献 References
[1] Sahin U ,Angin I ,Kiziloglu M F . Effect of freezing and thawing processes on some physical properties of saline–sodic soils mixed with sewage sludge or fly ash [J]. Soil & Tillage Research, 2008, 99 (2): 254-260.
[2] Daliakopoulos I ,Tsanis I ,Koutroulis A , et al. The threat of soil salinity: A European scale review [J]. Science of the Total Environment, 2016, 573 727-739.
[3] Franzluebbers J A ,Wright F S ,Stuedemann A J . Soil Aggregation and Glomalin under Pastures in the Southern Piedmont USA [J]. Soil Science Society of America Journal, 2000, 64 (3): 1018-1026.
[4] 高雪敖. 河套灌区灌水洗盐模式下的灌水量与施氮量互作对向日葵田土壤质量和产量的影响[D]. 乌鲁木齐市:新疆农业大学, 2022.
[5] Elliott E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Sci Soc Am J, 1986, 50: 627-633.
[6] 赖黎明,美丽,杨旸. 内蒙古河套灌区农业土壤特征与发展分析 [J]. 江苏农业科学, 2022, 50 (2): 213-218.
[7] 张美桃,杨培岭,任树梅,等. 灌溉水盐分及灌水量对土壤水盐分布与春玉米生长的影响 [J]. 水土保持学报, 2022, 36(4):290-298.
[8] 卢金伟.土壤团聚体水稳定性及其与土壤可蚀性之间关系研究[D]. 杨凌:西北农林科技大学. 2002.
[9] 周晓阳,徐明岗,周世伟,等. 长期施肥下我国南方典型农田土壤的酸化特征 [J]. 植物营养与肥料学报, 2015, 21 (6): 1615-1621.
[10] 孟红旗,刘景,徐明岗,等. 长期施肥下我国典型农田耕层土壤的pH演变 [J]. 土壤学报, 2013, 50 (6): 1109-1116.
[11] 田沐雨,于春甲,汪景宽,等. 氮添加对草地生态系统土壤pH、磷含量和磷酸酶活性的影响 [J]. 应用生态学报, 2020, 31 (9): 2985-2992.
[12] 王丽英,武雪萍,张彦才,等. 适宜施氮量保证滴灌日光温室黄瓜番茄产量降低土壤盐分及氮残留 [J]. 农业工程学报, 2015, 31 (17): 91-98.
[13] 张学科,白俊英,严海霞. 灌水量与施氮量对不同类型土壤中硝酸盐运移的影响 [J]. 节水灌溉, 2020, (2): 83-87.
[14] 刘雪艳,丁邦新,白云岗刘雪艳,丁邦新,白云岗,等. 微咸水膜下滴灌对土壤盐分及棉花产量的影响 [J]. 干旱区研究, 2020, 37 (2): 410-417.
[15] 李小刚,崔志军,王玲英,等. 盐化和有机质对土壤结构稳定性及阿特伯格极限的影响 [J]. 土壤学报, 2002, (4): 550-559.
[16] 徐爽. 化学物质对土壤团聚体稳定性及其它物理性状的影响[D]. 杨凌:西北农林科技大学, 2015.
[17] 朱梅珂,孔范龙,李悦,等. 不同水盐条件下胶州芦苇盐沼土壤水稳性团聚体的室内模拟实验研究 [J]. 湿地科学, 2019, 17 (2): 228-236.