期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Journal of Agriculture and Food Science. 2025; 5: (2) ; 25-31 ; DOI: 10.12208/j.jafs.20250016.

Mechanisms and research progress of probiotics in the prevention and treatment of Hyperuricemia
益生菌在高尿酸血症防治中的作用机制与研究进展

作者: 赵雨晴1, 朱巧梅1, 郎文静2, 孙振欧1, 郭庆彬1 *, 刘欢欢1,3 *

1 天津科技大学食品科学与工程学院 天津

2 天津市人民医院风湿免疫科,南开大学第一附属医院 天津

3 天津益膳康生物科技有限公司 天津

*通讯作者: 郭庆彬,单位: 天津科技大学食品科学与工程学院 天津;刘欢欢,单位: 天津科技大学食品科学与工程学院 天津 天津益膳康生物科技有限公司 天津;

发布时间: 2025-11-29 总浏览量: 49

摘要

高尿酸血症(Hyperuricemia,HUA)是痛风及多种慢性疾病的主要危险因素,其防治面临药物副作用及耐药性问题。近年来,益生菌因对肠道菌群的调节作用,被认为是缓解HUA的潜力策略之一。本文综述了益生菌在HUA防治中的研究进展,重点探讨了益生菌通过调节肠道菌群、增强尿酸降解、抑制尿酸合成、促进尿酸排泄以及减轻炎症等多种机制发挥降尿酸作用。同时,评估了不同益生菌菌株在动物实验和临床研究中的效果与局限,指出益生菌降尿酸疗效与安全性需大样本、多中心试验验证。本文讨论了益生菌干预的临床前景与优缺点,以期为HUA防治提供参考。

关键词: 高尿酸血症;益生菌;肠道微生态;尿酸代谢;临床应用

Abstract

Hyperuricemia (HUA) is a key risk factor for gout and several chronic conditions, yet long-term management remains challenging due to drug-related adverse effects and resistance. Probiotics have emerged as a promising non-pharmacological approach for HUA control, owing to their ability to modulate gut microbiota and restore intestinal balance. This review highlights recent advances in probiotic applications for HUA prevention and management, focusing on mechanisms such as remodeling gut microbial communities, promoting uric acid degradation and excretion, suppressing uric acid production, and mitigating inflammation. Evidence from animal and human studies demonstrates potential benefits, though efficacy varies across strains. Large-scale, multicenter clinical trials are still needed to validate safety and therapeutic consistency. We also discuss future opportunities and challenges in developing probiotic-based interventions. This synthesis aims to guide the design of effective, well-tolerated strategies for HUA management.

Key words: Hyperuricemia; Probiotics; Gastrointestinal microbiome; Uric acid metabolism; Clinical application

参考文献 References

[1] He H, Guo P, He J, et al. Prevalence of hyperuricemia and the population attributable fraction of modifiable risk factors: Evidence from a general population cohort in China [J]. Front Public Health, 2022, 10: 936717.

[2] Lyu X, Du Y, Liu G, et al. Prevalence and influencing factors of hyperuricemia in middle-aged and older adults in the Yao minority area of China: a cross-sectional study [J]. Sci Rep, 2023, 13(1): 10185.

[3] Du L, Zong Y, Li H, et al. Hyperuricemia and its related diseases: mechanisms and advances in therapy [J]. Signal Transduct Target Ther, 2024, 9(1): 212.

[4] Yamada N, Saito-iwamoto C, Nakamura M, et al. Lactobacillus gasseri PA-3 Uses the Purines IMP, Inosine and Hypoxanthine and Reduces their Absorption in Rats [J]. Microorganisms, 2017, 5(1): 10.

[5] Hamada T, Hisatome I, Wakimizu T, et al. Lactobacillus gasseri PA-3 reduces serum uric acid levels in patients with marginal hyperuricemia [J]. Nucleosides Nucleotides Nucleic Acids, 2022, 41(4): 361-9.

[6] Meng Y, Hu Y, Wei M, et al. Amelioration of hyperuricemia by Lactobacillus acidophilus F02 with uric acid-lowering ability via modulation of NLRP3 inflammasome and gut microbiota homeostasis [J]. Journal of Functional Foods, 2023, 111: 105903.

[7] Bi C, Zhang L, Liu J, et al. Lactobacillus paracasei 259 alleviates hyperuricemia in rats by decreasing uric acid and modulating the gut microbiota [J]. Frontiers in Nutrition, 2024, 11: 1450284.

[8] Kuo YW, Hsieh SH, Chen JF, et al. Lactobacillus reuteri TSR332 and Lactobacillus fermentum TSF331 stabilize serum uric acid levels and prevent hyperuricemia in rats [J]. PeerJ, 2021, 9: e11209.

[9] 张贵民, 刘瑞珍, 齐有啸, 等. 一种益生菌组合物及其用途: CN202210828227.X[P]. CN115252656B[2023-03-28].

[10] Cao J, Wang T, Liu Y, et al. Lactobacillus fermentum F40-4 ameliorates hyperuricemia by modulating the gut microbiota and alleviating inflammation in mice [J]. Food & Function, 2023, 14(7): :3259-3268.

[11] 吴宇, 曹佳媛, 刘伊索, 等. 降尿酸活性发酵乳杆菌F40-4在酸乳发酵中的应用[J]. 食品与发酵工业, 2023, 49(17): 168-73.

[12] Li Z, Hoshino Y, Tran L, et al. Phylogenetic Articulation of Uric Acid Evolution in Mammals and How It Informs a Therapeutic Uricase [J]. Molecular biology and evolution, 2022, 39(1): msab312.

[13] Yamada N, Saito C, Kano H, et al. Lactobacillus gasseri PA-3 directly incorporates purine mononucleotides and utilizes them for growth [J]. Nucleosides Nucleotides Nucleic Acids, 2022, 41(3): 221-230.

[14] Fu Y, Luo XD, Li JZ, et al. Host-derived Lactobacillus plantarum alleviates hyperuricemia by improving gut microbial community and hydrolase-mediated degradation of purine nucleosides [J]. ELife, 2024, 13: e100068.

[15] Artika I. Selection of uric acid oxidizing-Lactobacillus plantarum isolates based on their genetic determinant and uricase kinetics [J]. International Journal of Research in Pharmaceutical Sciences, 2020, 11(4):6583-6588.

[16] Ni C, Li X, Wang L, et al. Lactic acid bacteria strains relieve hyperuricaemia by suppressing xanthine oxidase activity via a short-chain fatty acid-dependent mechanism [J]. Food & Function, 2021, 12(15): 7054-67.

[17] Chen Y, Yan S, Yang J, et al. Integrated microbiome and metabolome analysis reveals the key role of taurohyocholate in the treatment of hyperuricemia with Lacticaseibacillus rhamnosus 2016SWU.05.0601 [J]. Food Research International, 2024, 197: 115234.

[18] Zhong F, Feng X, Cao J, et al. Novel Potential Probiotics from Chinese Baijiu Fermentation Grains: Dual Action of Lactiplantibacillus plantarum LTJ1/LTJ48 in Uric Acid Reduction and Gut Microbiota Restoration for Hyperuricemia Therapy in Mice [J]. Nutrients, 2025, 17(13): 2097.

[19] Li Y, Zhu J, Lin G, et al. Probiotic effects of Lacticaseibacillus rhamnosus 1155 and Limosilactobacillus fermentum 2644 on hyperuricemic rats [J]. Frontiers in Nutrition, 2022, 9: 993951.

[20] Fu Y, Chen YS, Xia DY, et al. Lactobacillus rhamnosus GG ameliorates hyperuricemia in a novel model [J]. npj Biofilms and Microbiomes, 2024, 10(1): 25.

[21] Miyajima Y, Karashima S, Mizoguchi R, et al. Prediction and causal inference of hyperuricemia using gut microbiota [J]. Scientific Reports, 2024, 14(1): 9901.

[22] Liang M, Liu J, Chen W, et al. Diagnostic model for predicting hyperuricemia based on alterations of the gut microbiome in individuals with different serum uric acid levels [J]. Frontiers in Endocrinology, 2022, 13: 925119.

[23] Zhao S, Feng P, Hu X, et al. Probiotic Limosilactobacillus fermentum GR-3 ameliorates human hyperuricemia via degrading and promoting excretion of uric acid [J]. Iscience, 2022, 25(10): 105198.

[24] Wang Z, Song L, Li X, et al. Lactiplantibacillus pentosus P2020 protects the hyperuricemia and renal inflammation in mice [J]. Frontiers in Nutrition, 2023, 10: 1094483.

[25] Kim CH. Complex regulatory effects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity [J]. Cellular & Molecular Immunology, 2023, 20(4): 341-350.

[26] Lee TH, Chen JJ, Wu CY, et al. Hyperuricemia and Progression of Chronic Kidney Disease: A Review from Physiology and Pathogenesis to the Role of Urate-Lowering Therapy [J]. Diagnostics, 2021, 11(9): 1674.

[27] Ohashi Y, Toyoda M, Saito N, et al. Evaluation of ABCG2-mediated extra-renal urate excretion in hemodialysis patients [J]. Scientific Reports, 2023, 13(1): 93.

[28] Liu P, Hu P, Jin M, et al. Compound probiotics alleviate hyperuricemia-induced renal injury via restoring gut microbiota and metabolism [J]. BMC Microbiology, 2025, 25(1): 280.

[29] Shi R, Ye J, Fan H, et al. Lactobacillus plantarum LLY-606 supplementation ameliorates hyperuricemia via modulating intestinal homeostasis and relieving inflammation [J]. Food & Function, 2023, 14(12): 5663-77.

[30] Rodríguez JM, Garranzo M, Segura J, et al. A randomized pilot trial assessing the reduction of gout episodes in hyperuricemic patients by oral administration of Ligilactobacillus salivarius CECT 30632, a strain with the ability to degrade purines [J]. Frontiers in Microbiology, 2023, 14: 1111652.

引用本文

赵雨晴, 朱巧梅, 郎文静, 孙振欧, 郭庆彬, 刘欢欢, 益生菌在高尿酸血症防治中的作用机制与研究进展[J]. 农业与食品科学, 2025; 5: (2) : 25-31.