参考文献 References
[1] He H, Guo P, He J, et al. Prevalence of hyperuricemia and the population attributable fraction of modifiable risk factors: Evidence from a general population cohort in China [J]. Front Public Health, 2022, 10: 936717.
[2] Lyu X, Du Y, Liu G, et al. Prevalence and influencing factors of hyperuricemia in middle-aged and older adults in the Yao minority area of China: a cross-sectional study [J]. Sci Rep, 2023, 13(1): 10185.
[3] Du L, Zong Y, Li H, et al. Hyperuricemia and its related diseases: mechanisms and advances in therapy [J]. Signal Transduct Target Ther, 2024, 9(1): 212.
[4] Yamada N, Saito-iwamoto C, Nakamura M, et al. Lactobacillus gasseri PA-3 Uses the Purines IMP, Inosine and Hypoxanthine and Reduces their Absorption in Rats [J]. Microorganisms, 2017, 5(1): 10.
[5] Hamada T, Hisatome I, Wakimizu T, et al. Lactobacillus gasseri PA-3 reduces serum uric acid levels in patients with marginal hyperuricemia [J]. Nucleosides Nucleotides Nucleic Acids, 2022, 41(4): 361-9.
[6] Meng Y, Hu Y, Wei M, et al. Amelioration of hyperuricemia by Lactobacillus acidophilus F02 with uric acid-lowering ability via modulation of NLRP3 inflammasome and gut microbiota homeostasis [J]. Journal of Functional Foods, 2023, 111: 105903.
[7] Bi C, Zhang L, Liu J, et al. Lactobacillus paracasei 259 alleviates hyperuricemia in rats by decreasing uric acid and modulating the gut microbiota [J]. Frontiers in Nutrition, 2024, 11: 1450284.
[8] Kuo YW, Hsieh SH, Chen JF, et al. Lactobacillus reuteri TSR332 and Lactobacillus fermentum TSF331 stabilize serum uric acid levels and prevent hyperuricemia in rats [J]. PeerJ, 2021, 9: e11209.
[9] 张贵民, 刘瑞珍, 齐有啸, 等. 一种益生菌组合物及其用途: CN202210828227.X[P]. CN115252656B[2023-03-28].
[10] Cao J, Wang T, Liu Y, et al. Lactobacillus fermentum F40-4 ameliorates hyperuricemia by modulating the gut microbiota and alleviating inflammation in mice [J]. Food & Function, 2023, 14(7): :3259-3268.
[11] 吴宇, 曹佳媛, 刘伊索, 等. 降尿酸活性发酵乳杆菌F40-4在酸乳发酵中的应用[J]. 食品与发酵工业, 2023, 49(17): 168-73.
[12] Li Z, Hoshino Y, Tran L, et al. Phylogenetic Articulation of Uric Acid Evolution in Mammals and How It Informs a Therapeutic Uricase [J]. Molecular biology and evolution, 2022, 39(1): msab312.
[13] Yamada N, Saito C, Kano H, et al. Lactobacillus gasseri PA-3 directly incorporates purine mononucleotides and utilizes them for growth [J]. Nucleosides Nucleotides Nucleic Acids, 2022, 41(3): 221-230.
[14] Fu Y, Luo XD, Li JZ, et al. Host-derived Lactobacillus plantarum alleviates hyperuricemia by improving gut microbial community and hydrolase-mediated degradation of purine nucleosides [J]. ELife, 2024, 13: e100068.
[15] Artika I. Selection of uric acid oxidizing-Lactobacillus plantarum isolates based on their genetic determinant and uricase kinetics [J]. International Journal of Research in Pharmaceutical Sciences, 2020, 11(4):6583-6588.
[16] Ni C, Li X, Wang L, et al. Lactic acid bacteria strains relieve hyperuricaemia by suppressing xanthine oxidase activity via a short-chain fatty acid-dependent mechanism [J]. Food & Function, 2021, 12(15): 7054-67.
[17] Chen Y, Yan S, Yang J, et al. Integrated microbiome and metabolome analysis reveals the key role of taurohyocholate in the treatment of hyperuricemia with Lacticaseibacillus rhamnosus 2016SWU.05.0601 [J]. Food Research International, 2024, 197: 115234.
[18] Zhong F, Feng X, Cao J, et al. Novel Potential Probiotics from Chinese Baijiu Fermentation Grains: Dual Action of Lactiplantibacillus plantarum LTJ1/LTJ48 in Uric Acid Reduction and Gut Microbiota Restoration for Hyperuricemia Therapy in Mice [J]. Nutrients, 2025, 17(13): 2097.
[19] Li Y, Zhu J, Lin G, et al. Probiotic effects of Lacticaseibacillus rhamnosus 1155 and Limosilactobacillus fermentum 2644 on hyperuricemic rats [J]. Frontiers in Nutrition, 2022, 9: 993951.
[20] Fu Y, Chen YS, Xia DY, et al. Lactobacillus rhamnosus GG ameliorates hyperuricemia in a novel model [J]. npj Biofilms and Microbiomes, 2024, 10(1): 25.
[21] Miyajima Y, Karashima S, Mizoguchi R, et al. Prediction and causal inference of hyperuricemia using gut microbiota [J]. Scientific Reports, 2024, 14(1): 9901.
[22] Liang M, Liu J, Chen W, et al. Diagnostic model for predicting hyperuricemia based on alterations of the gut microbiome in individuals with different serum uric acid levels [J]. Frontiers in Endocrinology, 2022, 13: 925119.
[23] Zhao S, Feng P, Hu X, et al. Probiotic Limosilactobacillus fermentum GR-3 ameliorates human hyperuricemia via degrading and promoting excretion of uric acid [J]. Iscience, 2022, 25(10): 105198.
[24] Wang Z, Song L, Li X, et al. Lactiplantibacillus pentosus P2020 protects the hyperuricemia and renal inflammation in mice [J]. Frontiers in Nutrition, 2023, 10: 1094483.
[25] Kim CH. Complex regulatory effects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity [J]. Cellular & Molecular Immunology, 2023, 20(4): 341-350.
[26] Lee TH, Chen JJ, Wu CY, et al. Hyperuricemia and Progression of Chronic Kidney Disease: A Review from Physiology and Pathogenesis to the Role of Urate-Lowering Therapy [J]. Diagnostics, 2021, 11(9): 1674.
[27] Ohashi Y, Toyoda M, Saito N, et al. Evaluation of ABCG2-mediated extra-renal urate excretion in hemodialysis patients [J]. Scientific Reports, 2023, 13(1): 93.
[28] Liu P, Hu P, Jin M, et al. Compound probiotics alleviate hyperuricemia-induced renal injury via restoring gut microbiota and metabolism [J]. BMC Microbiology, 2025, 25(1): 280.
[29] Shi R, Ye J, Fan H, et al. Lactobacillus plantarum LLY-606 supplementation ameliorates hyperuricemia via modulating intestinal homeostasis and relieving inflammation [J]. Food & Function, 2023, 14(12): 5663-77.
[30] Rodríguez JM, Garranzo M, Segura J, et al. A randomized pilot trial assessing the reduction of gout episodes in hyperuricemic patients by oral administration of Ligilactobacillus salivarius CECT 30632, a strain with the ability to degrade purines [J]. Frontiers in Microbiology, 2023, 14: 1111652.